LISTA DE EXERCÍCIOS - TEORIA DE CONJUNTOS

- 1. Verifique se P é uma partição do conjunto dos números inteiros.
- a) $P = \{R_0, R_1, R_2\}$ em que R_i é o conjunto dos inteiros que tem resto i na divisão por $3, i = \{1, 2, 3\}$.
- b) $P = \{A, B, C\}$ em que A é o conjunto dos inteiros menores que -100, B é o conjunto dos inteiros com valor aboluto menor ou igual a 100 e C é o conjunto dos inteiros maiores que 100.
 - 2. Prove que:
 - a) $A \subset B \Rightarrow A \times C \subset B \times C$
 - b) $A \times (B \cup C) = (A \times B) \cup (A \times C)$
 - c) $A \times (B C) = (A \times B) (A \times C)$
 - 3. Prove que $A \cup (B \cap A^C)^C = A \cup B^C$
 - 4. Prove que $[(A \cap B)^C \cup B]^C = \emptyset$
 - 5. Seja $D = \{1, 3, \{1, 2, 3\}\},$ determine P(D).
 - 6. Seja $A = \{a, b\}$, determine P(P(A)).
 - 7. Mostre que se A_1, A_2, \ldots, A_n são elementos de uma σ -álgebra \mathcal{F} então $\cap_{i=1}^n A_i$ também pertence a \mathcal{F} .
 - 8. Sendo A, B e C subconjuntos quaisquer expresse em notação matemática:
 - a) Estão em A e B, mas não estão em C
 - b) Não estão em nenhum deles
 - c) Estão na intersecção dos 3 conjuntos e no complementar de A.
 - 9. Verifique formalmente que:
 - a) $A \triangle B = B \triangle A$
 - b) $(A \triangle B) \cup (A \cap B) = A \cup B$
 - c) $[(A \cap B^C \cap C) \cup (A^C \cap B \cap C)] \cap (A \cap B \cap C^C) \varnothing$
 - 10. Sejam $A, B \in C$ conjuntos com $A \cap B \cap C = \emptyset$. Prove ou refute $|A \cup B \cup C| = |A| + |B| + |C|$.
 - 11. Sejam A, B e C conjuntos dois a dis disjuntos. Prove ou refute $|A \cup B \cup C| = |A| + |B| + |C|$.
- 12. Sejam os conjuntos A, B e C. Mostre que $A (B \cup C) = (A B) \cap (A C)$ e $A (B \cap C) = (A B) \cup (A C)$. Ilustre no diagrama de Venn.