3ª LISTA DE EXERCICIOS CE330 – FUNDAM. MAT. PARA PROBABILIDADE

Prof. Benito Olivares Aguilera

2° Sem./2023

INDUÇÃO MATEMÁTICA

- 1. Prove que $\forall n \geq 5$: $2n > n^2$.
- **2.** Prove que $\forall n \ge 10: 2^n > n^3$.
- 3. Prove que $\forall n \geq 4$: $n! > 2^n$.
- **4.** Prove que $\forall n \in \mathbb{N}: 0^3 + 1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$.
- 5. Prove que $\forall n \in \mathbb{N}: 0 \cdot 1 + 1 \cdot 2 + 2 \cdot 3 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}$.
- **6.** Encontre uma fórmula para $0 \cdot 1 \cdot 2 + 1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + n(n+1)(n+2)$ e prove que sua fórmula é correta.
- 7. Encontre uma fórmula para $3^0 + 3^1 + \dots + 3^n$, para $n \ge 0$ e prove que sua fórmula é correta.
- **8.** Prove que para todo $n \ge 1$,

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n} = \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{n+3} + \dots + \frac{1}{2n}.$$

- **9.** Prove que para todo $n \ge 1$: $2 \cdot 2^1 + 3 \cdot 2^2 + 4 \cdot 2^3 + \dots + (n+1) \cdot 2^n = n \cdot 2^{n+1}$.
- **10.** a) Prove que $\forall n \in \mathbb{N}$: $2 \mid (n^2 + n)$.
 - b) Prove que $\forall n \in \mathbb{N}: 6 | (n^3 n)$.
 - c) Prove que $\forall n \in \mathbb{N}: 64 | (9^n 8n 1)$.
 - d) Prove que $\forall n \in \mathbb{N}: (7^n 5^n)$ é sempre par.
 - e) Prove que $\forall n \in \mathbb{N}: 24 | (2 \cdot 7^n 3 \cdot 5^n + 1)$.
- 11. Prove que para quaisquer inteiros a e b e para todo $n \in \mathbb{N}$, $a b|a^n b^n$.

12. Prove que $\forall n \geq 2$:

$$\left(\frac{a+b}{2}\right)^n > \frac{a^n+b^n}{2}.$$

- **13.** Prove que $\forall x > -1$ e $\forall n \in \mathbb{N}$: $(1 + x)^n > nx$.
- 14. Encontre uma fórmula para o seguinte somatório e prove que sua fórmula é correta:

$$\sum_{i=1}^{n} \frac{1}{i(i+1)}.$$

15. Prove que \forall *n* ≥ 1:

$$\sum_{i=1}^{n} \frac{1}{i(i+1)(i+2)} = \frac{n^2 + 3n}{4(n+1)(n+2)}.$$

16. Suponha que r é um número real diferente de 1. Prove que

$$\sum_{i=1}^{n} r^{i} = \frac{r^{n+1} - r}{r - 1}.$$

17. Prove que para quaisquer números naturais n e k, se $k \le n$ então:

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}.$$

18. Prove o Teorema do Binômio:

$$\forall x, y \in \mathbb{R}, \forall n \in \mathbb{N}: (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

- **19.** Comprove que $\forall n \in \mathbb{N}$: $\sum_{k=0}^{n} {n \choose k} = 2^n$.
- **20.** Comprove que $\forall n \geq 1$: $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$.