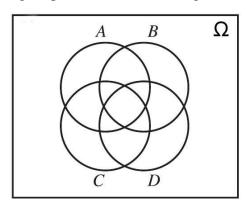
<u>2ª LISTA DE EXERCICIOS CE330 – FUNDAM. MAT. PARA PROBABILIDADE</u>

Prof. Benito Olivares Aguilera

2° Sem./2023

- 1. Usando as definições e propriedades verifique as seguintes identidades. Também verifique utilizando diagramas de Venn.
 - a) $A \setminus (A \cap B) = A \setminus B$.
 - b) $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$.
 - c) $A \cup (B \setminus C) = (A \cup B) \setminus (C \setminus A)$.
 - d) $(A \cap B) \setminus B = \emptyset$.
 - e) $A \setminus (A \setminus B) = A \cap B$.
 - f) $(A \setminus B) \cap C = (A \cap C) \setminus B$.
- **2.** Use a representação lógica dos seguintes conjuntos e logo determine quais são equivalentes entre si:
 - a) $(A \setminus B) \setminus C$.
 - b) $A \setminus (B \setminus C)$.
 - c) $(A \setminus B) \cup (A \cap C)$.
 - d) $(A \setminus B) \cap (A \setminus C)$.
 - e) $A \setminus (B \cup C)$.
- **3.** Utilize diagramas de Venn para mostrar que a diferença simétrica satisfaz a propriedade associativa, isto é, para quaisquer conjuntos A, B e C: A Δ (B Δ C) = (A Δ B) Δ C.
- **4.** Use qualquer método para verificar as seguintes identidades:
 - a) $(A \Delta B) \cup C = (A \cup C) \Delta (B \setminus C)$.
 - b) $(A \triangle B) \cap C = (A \cap C) \triangle (B \cap C)$.
 - c) $(A \triangle B) \setminus C = (A \setminus C) \triangle (B \setminus C)$.
 - d) $(A \cup B) \Delta C = (A \Delta C) \Delta (B \setminus A)$.
 - e) $(A \cap B) \Delta C = (A \Delta C) \Delta (A \setminus B)$.
 - f) $(A \setminus B) \Delta C = (A \Delta C) \Delta (A \cap B)$.
 - 5. Preencha os espaços em branco para fazer verdadeiras as seguintes identidades:
 - a) $(A \triangle B) \cap C = (C \setminus A) \triangle$ _____.
 - b) $C \setminus (A \Delta B) = (A \cap C) \Delta$ _____.
 - c) $(B \setminus A) \Delta C = (A \Delta C) \Delta$ _____.
 - **6.** Prove formalmente que
 - a) se $A \cap B = A$ então $A \subseteq B$.
 - b) se $A \setminus B \subseteq C$ então $A \setminus C \subseteq B$.
 - c) se $A \cap C \subseteq B$ e $a \in C$ então $a \notin A \setminus B$.

7. Tente localizar no seguinte diagrama de Venn o conjunto $(A \cap D) \setminus (B \cup C)$. Detectou algum problema? Formule alguma explicação e proponha uma solução.



- 8. Em um programa de intercâmbio 35 estudantes estrangeiros vieram ao Brasil. Deles, 16 visitaram Manaus; 16, São Paulo e 11, Salvador. Desses estudantes, 5 visitaram Manaus e Salvador e, desses 5, 3 visitaram também São Paulo. Qual o número de estudantes que visitaram Manaus ou São Paulo?
- 9. Seja Ω um conjunto não vazio e seja $\mathcal{A} = \{A_1, A_2, \cdots, A_n\}$ uma família (ou classe) de subconjuntos de Ω . Diremos que \mathcal{A} é uma álgebra sobre Ω se satisfaz:
 - i) $\Omega \in \mathcal{A}$.
 - ii)
 - se $A_i \in \mathcal{A}$ então ${A_i}^c \in \mathcal{A}$, $\forall i = 1, 2, \dots, n$. $\forall n$, se $A_1, A_2, \dots, A_n \in \mathcal{A}$ então $\bigcup_{i=1}^n A_i \in \mathcal{A}$. iii)
- a) Qual a menor álgebra possível?
- b) Qual a menor álgebra contendo um conjunto A?
- c) Para $\Omega = \{1, 2, \dots, 6\}$ comprove que $\mathcal{P}(\Omega)$ (o conjunto das partes de Ω) é uma álgebra.
- **10.** Sejam A, B, C e D conjuntos sobre Ω . Prove formalmente que:
- a) $A \times (B \cap C) = (A \times B) \cap (A \times C)$.
- b) $A \times (B \cup C) = (A \times B) \cup (A \times C)$.
- c) $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$.
- d) $(A \times B) \cup (C \times D) \subseteq (A \cup C) \times (B \cup D)$.
- e) $A \times \emptyset = \emptyset \times A = \emptyset$.